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Abstract: This paper deals with the fourth-order p-Laplace boundary value problem of resonance
{ (0, (X"(®))" = f(t,x(1), X'(t)), O<t<l

x(0) =0, x(1) = ax(£), x"(0) =0, x"(2) =bx"(n)
b"n <1. The existence of solution is obtained by means of Mawhin’s continuation theorem.

where 0<¢&,m<La,b>0 such that aé=1 and

1. Introduction

Boundary value problems of differential equations are of great significance both in theory and in
practice. where, differential equation with p-Laplace operator is an important research field in linear
analysis, Many practical problems are translated into the existence of solutions to boundary value
problems with p-Laplac operatorse . For example, the application of gas dynamics, research on
flight stability of missiles, neuroscience and chemistry . The study of boundary value problems
with p-Laplace operator resonance differential equations can not only improve the basic
mathematical theory, but also have an important influence on the study of other disciplines ¥,

Lu,Jin [6] proved the existence of solutions for the following boundary value problems is studied
by using the coincidence degree theory

(@, (U"(1)))" = f(t,u(t),u'(t),u"(t)),0<t<1
u(0) = 0,u() = au(&),u"(0) = 0,u"(1) =bu"(r)
For this boundary value problem, ifa=b=0and f (t,u) is nonlinear term, By the fixed point

theory proved the existence and multiplicity of some solutions [7-8]. In [9], by using the upper and
lower solution method proved the existence result of the solution. These studies on boundary value
problems are conducted in non-resonant situations. Based on the above results, In this paper, the
existence of solutions to the following boundary value problems is studied by using the coincidence
degree extension theorem

(@, (X"(1)))" = f(t, x(t), X' (1)), 0<t<1
{X(O) =0,x(2) =ax($), x"(0) =0, x"(1) = bx"(7)
where ¢ (t) = |t|p_2t, f:C([0,]]xR* > R),0<¢&,m<La,b>0,and a&=b"'p=1.

Mawhin's continuation theorem:
Let X,Y be the Banach space, L:domL c X —Y be the Linear mapping, N: X —Y be the

1)

Nonlinear continuous mapping, Let dimker L :dim(\%m I_) <+o0, and ImLis a Closed set in Y,

according to L is a Fredholm operator whose index is zero. If L is a Fredholm operator whose index
is zero, then there is a continuous projection operator P: X — KerLand Q:Y —Y,, such that

ImP=KerL, KerQ=ImL, X =KerL®KerP,Y =ImL®ImQ.L;: is invertible, so let's

- I_|domLmX1

call that the inverse K .If QN(Q)is bounded, and K(I —Q)N : Q — X is relatively tight in X ,
according to N is L— tight inQ, where Q is any bounded open set in X .
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Lemma 1.1: (Mawhin coincidence degree theory ™) Let X,Y be the Banach space, L is a

Fredholm operator whose index is zero, N QY is L- tight inQ..If
(1) Lx # ANX,V(x, 1) € (domL moQ) x (0,1) ;
(2)NxeImL,Vxe KerLNnaoQ;
(3)deg(JON,QnKerL,0) =0, there J:ImQ — KerL is a linear isomorphism; equation
Lx = Nx has at least one solution in domL N Q.
X"(t) =v(t),t €(0,1)

has a unique solution x,
X(0) =0,x(1) =ax(¢)

Lemma 1.2 Let Osc<§, if ve[0,1], BVP {
x(t) = [, T(t, s)v(s)ds,t <[0,1].

ﬁ[(l—s)—c(cf—s)],tﬁs

S
1-c&
Lt(l—s), t<s
1-c&
1
1-cé
Define 1.1: LetW ={x:x,¢,(x") €C’[0,1]}, if xeW and satisfies (1), according to x is a
solution to the boundary value problem (1).

se[0,£]:

[@-t)—c(&-1)],s<t
I'({,s)=

selé,1]:

[s@-t)+t(t—5)],s <t

2. aé::bﬂpil =1

When p =2, (¢,(x")"= (X" ?x")" is nonlinear, so apply the Mawhin's coincidence degree
theory, we have BVP (1) in the following form:

U (t) = ¢, (U, (©) =|u, ] u, (t)
u, (t) = f (t,u, (), u; (1))

u,(0)=0, u@)=au(s)
u,(0)=0, u,(Q= bpiluz (7)

p—

)

There g >1is a constant, and %+§ =1. If u(t) = (u,(t),u,(t))" is a solution to (2), then u,(t)is a

solution to BVP (1).
Define |¢|, = trn[0<';1§|¢5(t)|, U ={u=(y,(),u,())" €C'[0,1]xC"[0,1]} , with the norm

!

’
ul u2

Jull, = max {|u1|0 U | Ju,l, }; V= {v =(v,(),v,(N" € C1[0,1]><C1[0,1]} ;the norm

[vll, = max{[v,|,.]v,;} - U and V' be the Banach space. Let L:domL cU —V , and

Lu= {“1”} 3)
u2

where domL = {u e C*[0,1]x C'[0,1]: 1, (0) = 0,u, (1) = au, (&), u, (0) = 0,u, (1) =b*u, (17)}
Let N:U —->V,and
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so (2) is transformed into an abstract equation: Lu = Nu,u € domL .
It's easy to see by the definition of L, Kerl ={u=(ct,c,t)" :c,,c,  Rjand

ImL = {v =(v,(),v,()" eV :j:_[;vl(s)dsdt = f:jttvz (s)dsdt = O} , Assumed projection operator
P:U — KerLandQ:Y — ImQ as follows (Pu)(t) = (u; (O)t,u, (0)t)",
2 lpt 2 et .
(QV)(t) = (E jo Lt vl(s)olsolt,E jo J.avl(s)dsdt)

ForveV , let v=v-Qv, so J':L;vl(s)dsdt :J.:J'ttvz(s)dsdt =0.VelmLand V =ImL+R?*.In
n

addition, InLNR? = {0}, thus V = Im L ® R?.That means dim KerL =codimImL <+, so Lis

an Fredholm operator whose index is zero. On the other hand, K is L| inverse, so

KerPdomL

(KO = (], [ w(s)dsdz, [} [v,(s)dsd )" )
By (4) and (5), we have N is L —tight inQ, Qis any bounded open set inU .

Theorem 2.1: If a8 =b" "'y =1, and satisfying

(H.) there is constant D > Osuch that vf (t,u,v)>0 Cor vf (t,u,v)<0) , for all|v|>D, te[0,]]

andueR.

(H2) there is a nonnegative constant r., i =1,2,3,4,5such that
| f(tu,v)< r1|u|p_1 +r, |v|p_l +1,, (t,u,v) e[0,]]xR?
. 1, 1<p<2
when C (r,+r1,) <1, BVP (1) has at least one solution, whereC =4 :
27, p>2

Proof: For the equation Lu=ANu, 1e(0,1). Let
Q, ={uedomL:Lu=ANu,2e(0,1)}, Ifu(t) = (u,(t),u,(t))" €<, then
u" (1) = ¢, (U, () = Ju, (O u, )

u," () = f (t,u (1), ;" (1) (6)

u(0)=0, u@)=au,(s)

u,(0)=0, u,(1)=b""u,(n)
First we prove that there is a constant t,t, €[0,1], such that
W' @)D U
u,(t,)=0 8
In fact, by Lu=ANu, we get QNx=0, thus j:'[tt f(s,u,(s),u, (s)))dsdt =0, so, there are
n

t, €[0,1], such that f(t,u,(t),u, (t,)) =0, by (H1), we get (7) set up.
On the other hand, by boundary conditions and functions u,(t) is continuous in[0,1], we get

& €(0,8) &, e(£,1), such that au, (&) -u,(§) = (@-D[u, (&) ~u,(0)] = X~ &)y, (&)
ul(l) - ul(f) = (1_‘):)“1' (ng) ; there are ul' (51) = U1' (52) ) ‘53 € (511 é:z) < (0,1), such that u1” (53) =0,
then u, (&) =@, (u,"(&,)) =0.by u,(0) =0and u,(t) is continuous in [0,1], we gen (8) set up.
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The second, by (6) and (H), we get
Jolu” @kt =2[}| 1 @0 Ot

< rlj';|u1(t)|pfldt +, I:

' p-1
U, (t)‘ dt+r,

< r1|u1|§71 +1,|u, :1

+1 9)
By (7)(8) and Hdlder inequality, we have
t ! ’ t "
[/ (s)as ) (t)+ f, u"(9)ds

< §D+j0l

t oy ' t 1
[ v (s)ds u, (t,) + L u,"(s)ds| < |

1 4, 1
By (6), we get [ u"(9)fts = 2o, (U, (©)fds < ¢, (us],) (12)
Substitute equation (10-12) into equation (9), we get
il _
Jo | ©fdt < 5+ 5)( + 0, (uf )7+

oy, < u,’

<
0

u' (s)ds‘ (10)

|y, < <|u,

<
0

U (s)‘ ds (11)

<C, (L +15)(D" " +|u,| )+,
<Cy(r+n) o Oft+r, (13)

by p>land C (r+r,)+r,+r,<1set up, The above formula indicates that there is a constant

1
M, >0, such that L

u,” (t)‘dt <M,

50, |u,|, <|u,

<M, (14)
0

|U1h < UJ

<D+M =M, (15)
0
Let @={ueU :|ul, <max{M,,M,}+1}, The lemma 1.1 condition (1) is satisfied. Without loss

of generality, Assuming that [v|> D,t e[0,1]and u R, Vf (t,u,v)>0is set up. So let's prove that
for ueKerLNdQ A NuglmL . Otherwise, there are u,=(ct,c,t)e KerL such that

Nu, = (¢,(u,), f (t,ct,c;) e ImL .That is QNu, =0, so J.:J'tt f (s,c,s,¢ )dsdt =0 .According to the
7

condition (H;),we get |c1|£ D <M,, That contradicts u, € 0Q2. Therefore, condition (2) in lemma
1.1 is also satisfied.
Let the mapping J : ImQ — KerL is J(c,c,) = (ct,c,t), and

H(u, &) = uu + (1— 2)JON, V(u, 1) € Qx[0,1] ; For u e (6Q n KerL)x[0,1] ,we have
uct +Mrr f(s,c;s,c,)dsdt
1_77 0Jnt
H(u,u)= 20— ) o 0
—/,[ t
,UCZ'[ + ?J.O J.ﬁt ¢C| (CZS)det
So, deg{JON,QKerL,0} =deg{H (0,u), Q" KerL,0}
=deg{H (Lu), QN KerL,0} =deg{l,2nKerL,0} =0,

That is, condition (3) in lemma 1.1 is satisfied. According to lemma 1.1, there is a solution to

equation (6) inQ~domL u™(t) = (u, (t),u,(t))" .s0 BVP (1) has a solution u, (t).
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3. Conclusion

In this paper, the existence of at least one solutions to boundary value problem of resonance
fourth-order p-Laplace with one order derivative is considered; By means of Mawhin's continuation
theorem, the existence of solution is verified .
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