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Abstract: This paper deals with the fourth-order p-Laplace boundary value problem of resonance
( ( ( ))) ( , ( ), ( )), 0 1
(0) 0, (1) ( ), (0) 0, (1) ( )

p x t f t x t x t t
x x ax x x bx
ϕ

x η
′′ ′′ ′= < <

 ′′ ′′ ′′= = = =
where 0 , 1; , 0a bξ η< < >  such that 1aξ =  and

1 1pb η− ≤ . The existence of solution is obtained by means of Mawhin’s continuation theorem.  

1. Introduction 
Boundary value problems of differential equations are of great significance both in theory and in 

practice. where, differential equation with p-Laplace operator is an important research field in linear 
analysis, Many practical problems are translated into the existence of solutions to boundary value 
problems with p-Laplac operatorse . For example, the application of gas dynamics, research on 
flight stability of missiles, neuroscience and chemistry [1-3].The study of boundary value problems 
with p-Laplace operator resonance differential equations can not only improve the basic 
mathematical theory, but also have an important influence on the study of other disciplines [4-5]. 

Lu,Jin [6] proved the existence of solutions for the following boundary value problems is studied 
by using the coincidence degree theory 

( ( ( ))) ( , ( ), ( ), ( )),0 1
(0) 0, (1) ( ), (0) 0, (1) ( )

p u t f t u t u t u t t
u u au u u bu
ϕ

ξ η
′′ ′′ ′ ′′= < <

 ′′ ′′ ′′= = = =
 

For this boundary value problem, if 0a b= = and ( , )f t u is nonlinear term, By the fixed point 
theory proved the existence and multiplicity of some solutions [7-8]. In [9], by using the upper and 
lower solution method proved the existence result of the solution. These studies on boundary value 
problems are conducted in non-resonant situations. Based on the above results, In this paper, the 
existence of solutions to the following boundary value problems is studied by using the coincidence 
degree extension theorem 

( ( ( ))) ( , ( ), ( )), 0 1
(0) 0, (1) ( ), (0) 0, (1) ( )

p x t f t x t x t t
x x ax x x bx
ϕ

x η
′′ ′′ ′= < <

 ′′ ′′ ′′= = = =
                                                                                          (1) 

where 2 2( ) , : ([0,1] ),0 , 1, , 0p
p t t t f C R R a bϕ ξ η−= × → < < > ,and 1 1pa bξ η−= = . 

Mawhin’s continuation theorem: 
Let ,X Y  be the Banach space, :L domL X Y⊂ → be the Linear mapping, :N X Y→ be the 

Nonlinear continuous mapping, Let dim ker dim( )Im
YL L= < +∞ , and Im L is a Closed set in Y , 

according to L is a Fredholm operator whose index is zero. If L  is a Fredholm operator whose index 
is zero, then there is a continuous projection operator :P X KerL→ and 1:Q Y Y→ , such that 
Im er , er Im , , Im ImP K L K Q L X KerL KerP Y L Q= = = ⊕ = ⊕ .

1
:P domL X

L L
∩

= is invertible, so let's 

call that the inverse K .If ( )QN Ω is bounded, and ( ) :K I Q N− XΩ→ is relatively tight in X , 
according to N is L −  tight inΩ , where Ω is any bounded open set in X . 
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Lemma 1.1:（Mawhin coincidence degree theory [10]）Let ,X Y  be the Banach space, L is a 
Fredholm operator whose index is zero, :N YΩ→  is L −  tight inΩ .If 

(1) , ( , ) ( ) (0,1)Lx Nx x domLλ λ≠ ∀ ∈ ∩∂Ω × ; 
(2) Im ,Nx L x KerL∈ ∀ ∈ ∩∂Ω ; 
(3) deg( , ,0) 0JQN KerLΩ∩ ≠ , there : ImJ Q KerL→ is a linear isomorphism; equation 
Lx Nx=  has at least one solution in domL∩Ω . 

Lemma 1.2[11]: Let 
10 c
ξ

≤ < , if [0,1]v∈ , BVP 
( ) ( ), (0,1)

(0) 0, (1) ( )
x t v t t

x x ax x
′′ = ∈

 = =
has a unique solution x , 

1

0
( ) ( , ) ( ) , [0,1]x t t s v s ds t= Γ ∈∫ . 
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s t c t s t
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s

s t t t s s t
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ξ
ξ

ξ
ξ

ξ

ξ
ξ
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  − − − ≤  − ∈   − − − ≤  − Γ = 
 − ≤ −∈ 

  − + − ≤  −

 

Define 1.1：Let { }2: , ( ) [0,1]pW x x x Cϕ ′′= ∈ , if x W∈ and satisfies (1), according to x  is a 
solution to the boundary value problem (1). 

2. 
1 1pa bξ η −= =  

When 2p ≠ , 2( ( )) ( )p
p x x xϕ −′′ ′′ ′′ ′′ ′′=  is nonlinear, so apply the Mawhin’s coincidence degree 

theory, we have BVP (1) in the following form:  
2

1 2 2 2

2 1 1

1 1 1
1

2 2 2

( ) ( ( )) ( ) ( )

( ) ( , ( ), ( ))
(0) 0, (1) ( )

(0) 0, (1) ( )

q
q
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u t u t u t u t

u t f t u t u t
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ξ
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−

−

 ′′ = =

 ′′ ′=

= =
 = =

                                                                                                   (2) 

There 1q > is a constant, and 1 1 1
p q
+ = . If 1 2( ) ( ( ), ( ))Tu t u t u t= is a solution to (2), then 1( )u t is a 

solution to BVP (1). 
Define 

0 [0,1]
max ( )
t

tφ φ
∈

= , { }1 1
1 2( ( ), ( )) [0,1] [0,1]TU u u u C C= = ⋅ ⋅ ∈ × , with the norm 

{ }1 1 2 20 00 0
max , , ,

U
u u u u u′ ′= ; { }1 1

1 2( ( ), ( )) [0,1] [0,1]TV v v v C C= = ⋅ ⋅ ∈ × ,the norm 

 { }1 20 0
max ,

V
v v v= . U and V  be the Banach space. Let :L domL U V⊂ → , and  

1

2

u
Lu

u

 ′′
 =
 ′′ 

                                                                                                                                  (3) 

where { }1 1 1
1 2 1 2 2 2[0,1] [0,1] : (0) 0, (1) ( ), (0) 0, (1) ( )pdomL u C C u u au u u b uξ η−= ∈ × = = = =  

Let :N U V→ , and 
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2

1 1

( ( ))

( , ( ), ( ))
q u t

Nu
f t u t u t

ϕ 
=   ′ 

                                                                                                              (4) 

so (2) is transformed into an abstract equation: ,Lu Nu u domL= ∈ . 
It's easy to see by the definition of L , { }1 2 1 2( , ) : ,TKerL u c t c t c c R= = ∈ and 

{ }1 1

1 2 1 20 0
Im ( ( ), ( )) : ( ) ( ) 0

t tT

t t
L v v v V v s dsdt v s dsdt

ξ η
= = ⋅ ⋅ ∈ = =∫ ∫ ∫ ∫ , Assumed projection operator

:P U KerL→ and : ImQ Y Q→  as follows 1 2( )( ) ( (0) , (0) )TPu t u t u t′ ′= , 
1 1

1 10 0

2 2( )( ) ( ( ) , ( ) )
1 1

t t T

t t
Qv t v s dsdt v s dsdt

ξξ ξ η
=

− −∫ ∫ ∫ ∫  

For v V∈ , let v v Qv= − , so 
1 1

1 20 0
( ) ( ) 0

t t

t t
v s dsdt v s dsdt

ξ η
= =∫ ∫ ∫ ∫  . Imv L∈ and 2ImV L R= + . In 

addition, { }2Im 0L R∩ = , thus 2ImV L R= ⊕ .That means dim dim ImKerL co L= < +∞ , so L is 

an Fredholm operator whose index is zero. On the other hand, K is 
KerP domL

L
∩

 inverse, so  

1 20 0 0 0
( )( ) ( ( ) , ( ) )

t t TKv t v s dsd v s dsd
t t

t t= ∫ ∫ ∫ ∫                                                                                      (5) 

By (4) and (5), we have N is L − tight inΩ , Ω is any bounded open set inU . 
Theorem 2.1: If 1 1pa bξ η−= = , and satisfying 
(H1) there is constant 0D > such that ( , , ) 0vf t u v > （or ( , , ) 0vf t u v < ）, for all v D> , [0,1]t∈

and u R∈ . 
(H2) there is a nonnegative constant ir , 1, 2,3, 4,5i = such that 

1 1
1 2 3( , , ) p pf t u v r u r v r− −≤ + + , 2( , , ) [0,1]t u v R∈ ×  

when 1 2( ) 1pC r r+ < , BVP (1) has at least one solution, where 1

1, 1 2
2 , 2p p

p
C

p−

< ≤
=  >

. 

Proof：For the equation Lu Nuλ= , (0,1)λ∈ . Let  
{ }1 : , (0,1)u domL Lu Nuλ λΩ = ∈ = ∈ , If 1 2 1( ) ( ( ), ( ))Tu t u t u t= ∈Ω , then  

2
1 2 2 2

2 1 1

1 1 1
1

2 2 2

( ) ( ( )) ( ) ( )

( ) ( , ( ), ( ))
(0) 0, (1) ( )

(0) 0, (1) ( )

q
q

p

u t u t u t u t

u t f t u t u t
u u au

u u b u

ϕ

ξ
η

−

−

 ′′ = =

 ′′ ′=

= =
 = =

                                                                                                   (6) 

First we prove that there is a constant 1 2, [0,1]t t ∈ , such that 

1 1( )u t D′ ≤                                                                                                                                        (7) 

 2 2( ) 0u t =                                                                                                                                         (8) 

In fact, by Lu Nuλ= , we get 0QNx = , thus 
1

1 10
( , ( ), ( ))) 0

t

t
f s u s u s dsdt

η
′ =∫ ∫ , so, there are 

1 [0,1]t ∈ , such that 1 1 1 1 1( , ( ), ( )) 0f t u t u t′ = , by (H1), we get (7) set up. 
On the other hand, by boundary conditions and functions 1( )u t is continuous in[0,1] , we get 

1 (0, )ξξ ∈ 和 2 ( ,1)ξξ ∈ , such that 1 1 1 1 1 1( ) ( ) ( 1)[ ( ) (0)] (1 ) ( )au u a u u uξξξξξ    ′− = − − = −  , 

1 1 1 2(1) ( ) (1 ) ( )u u uξξξ  ′− = − ; there are 1 1 1 2( ) ( )u uξξ ′ ′= , 3 1 2( , ) (0,1)ξξξ  ∈ ⊂ , such that 1 3( ) 0u ξ′′ = , 

then 2 3 1 3( ) ( ( )) 0pu uξ ϕ ξ′′= = .by 2 (0) 0u = and 2 ( )u t is continuous in [0,1] , we gen (8) set up. 
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The second, by (6) and (H2), we get 
1 1

2 1 10 0
( ) ( , ( ), ( ))u t dt f t u t u t dtλ′′ ′=∫ ∫  

11 11
1 1 2 1 30 0

( ) ( )
ppr u t dt r u t dt r
−

− ′≤ + +∫ ∫  
11

1 1 2 1 30 0

ppr u r u r
−

− ′≤ + +                                                                                            (9) 

By (7)(8) and Holder  inequality, we have 

1

1

1 1 1 1 1 1 10 0 00
( ) ( ) ( ) ( )

t t

t
u u s ds u u t u s ds D u s ds′ ′ ′ ′′ ′′≤ ≤ ≤ + ≤ +∫ ∫ ∫                                             (10) 

2

1
22 2 2 2 2 20 0 00

( ) ( ) ( ) ( )
t t

t
u u s ds u u t u s ds u s ds′ ′ ′ ′′ ′′≤ ≤ ≤ + ≤∫ ∫ ∫                                               (11) 

By (6), we get 
1 1

1 2 2 00 0
( ) ( ( )) ( )q qu s ds u t ds uλ ϕ ϕ′′ = ≤∫ ∫                                                          (12) 

Substitute equation (10-12) into equation (9), we get 
1 1

2 1 2 2 300
( ) ( )( ( )) p

qu t dt r r D u rϕ −′′ ≤ + + +∫  
1

1 2 2 30
( )( )p

pC r r D u r−≤ + + +  
1

1 2 2 30
( ) ( )pC r r u t dt r′′≤ + +∫                                                                                   (13) 

by 1p > and 1 2 3 4( ) 1pC r r r r+ + + < set up, The above formula indicates that there is a constant 

1 0M > , such that 
1

2 10
( )u t dt M′′ ≤∫  

so, 2 2 10 0
u u M′≤ ≤                                                                                                                      (14) 

1
1 1 1 20 0

:qu u D M M−′≤ ≤ + =                                                                                                  (15) 

Let { }{ }1 2: max , 1
U

u U u M MΩ = ∈ < + , The lemma 1.1 condition (1) is satisfied. Without loss 

of generality, Assuming that , [0,1]v D t> ∈ and u R∈ , ( , , ) 0vf t u v > is set up. So let's prove that 
for u KerL∈ ∩∂Ω 有 ImNu L∉ . Otherwise, there are 0 1 2( , )u c t c t KerL= ∈  such that 

0 2 1 1( ( ), ( , , ) ImqNu u f t c t c Lϕ= ∈ .That is 0 0QNu = , so
1

1 10
( , , ) 0

t

t
f s c s c dsdt

η
=∫ ∫ .According to the 

condition (H1),we get 1 2c D M≤ < , That contradicts 0u ∈∂Ω . Therefore, condition (2) in lemma 
1.1 is also satisfied. 

Let the mapping : ImJ Q KerL→ is 1 2 1 2( , ) ( , )J c c c t c t= , and 

( , ) (1 ) , ( , ) [0,1]H u u JQN uµ µ µ µ= + − ∀ ∈Ω× ; For ( ) [0,1]u KerL∈ ∂Ω∩ × ,we have 
1

1 1 10

1

2 20

2(1 ) ( , , )
1

( , ) 0
2(1 ) ( )

1

t

t

t

qt

c t f s c s c dsdt
H u

c t c s dsdt

η

ξ

µµ
η

µ
µµ ϕ
ξ

− + − = ≠
− + − 

∫ ∫

∫ ∫
 

So, { } { }deg , ,0 deg (0, ), ,0JQN KerL H u KerLΩ∩ = Ω∩  

{ } { }deg (1, ), ,0 deg , ,0 0H u KerL I KerL= Ω∩ = Ω∩ ≠ ,  
That is, condition (3) in lemma 1.1 is satisfied. According to lemma 1.1, there is a solution to 

equation (6) in domLΩ∩ * * *
1 2( ) ( ( ), ( ))Tu t u t u t= .so BVP（1）has a solution *

1 ( )u t . 
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3. Conclusion 
In this paper, the existence of at least one solutions to boundary value problem of resonance 

fourth-order p-Laplace with one order derivative is considered; By means of Mawhin,s continuation 
theorem, the existence of solution is verified . 
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